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Abstract. Raw optical coherence tomography (OCT) images typically
are of low quality because speckle noise blurs retinal structures, severely
compromising visual quality and degrading performances of subsequent
image analysis tasks. In this paper, we propose a novel end-to-end cross-
domain denoising framework for speckle noise suppression. We utilize
high quality ground truth datasets produced by several commercial OCT
scanners for training, and apply the trained model to datasets collected
by our in-house OCT scanner for denoising. Our model uses the high-
resolution network (HRNet) as backbone, which maintains high-resolution
representations during the entire learning process to restore high fidelity
images. In addition, we develop a hierarchical adversarial learning strat-
egy for domain adaption to align distribution shift among datasets col-
lected by different scanners. Experimental results show that the proposed
model outperformed all the competing state-of-the-art methods. As com-
pared to the best of our previous method, the proposed model improved
the signal to noise ratio (SNR) metric by a huge margin of 18.13dB and
only required 25ms for denoising one image in testing phase, achieving
the real-time processing capability for the in-house OCT scanner.
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1 Introduction

OCT is a recent imaging modality for biological tissues [14]. OCT images usu-
ally suffer from speckle noises, which degrade quality of OCT images and make
automated image analysis challenging. Traditional speckle noise suppression al-
gorithms can be categorized into three groups: 1) Filter-based techniques [1,
4], 2) Sparse transform-based methods [8, 6] and 3) Statistics and low-rank
decomposition-based methods [2, 9, 3]. Though these traditional methods are
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effective for image denoising, there are remaining challenges such as insufficient
image feature representation, and some of the methods are time-consuming.

In the past few years, there has been a boom of the application of deep
learning to noise suppression. For example, Zhang et al. [16] used the residual
learning strategy and batch normalization technique to improve the feedforward
denoising convolutional neural network (DnCNN) for target blind Gaussian de-
noising. Dong et al. [5] proposed a denoising prior driven deep neural network
(DPDNN) for image restoration, and both methods were designed based on the
additive noise model. We proposed a model, Edge-cGAN [10] based on the con-
ditional generative adversarial network (cGAN) [7] to remove speckle noise, and
developed training dataset T by using commercial scanners for data collection.
Later, we developed an in-house OCT scanner and improved Edge-cGAN to the
second version (Mini-cGAN [17]) to suppress speckle noise for dataset B col-
lected by the in-house scanner. While it achieved good performances on dataset
B, Mini-cGAN is not an end-to-end learning model, requiring multiple steps of
training. In addition, the testing time complexity is high, making it not suitable
for real-time processing.

Different OCT scanners have different characteristics and datasets collected
by different scanners may contain distribution shifts. In this paper, our goal is to
compensate for the distribution shifts and leverage the high quality ground truth
dataset T to achieve effective speckle noise suppression for dataset B collected
by our in-house scanner. We propose a novel end-to-end learning framework
to achieve our goal and the diagram is shown in Fig. 1. The proposed model
1) utilizes the HRNet backbone to maintain high-resolution representation for
image restoration and 2) uses a dynamic hierarchical domain adaptation network
to leverage the dataset T for training and apply the trained model to dataset
B for noise removal. Our model not only significantly improves image quality
as compared with Edge-cGAN and Mini-cGAN but also dramatically reduces
testing time, satisfying the real-time requirement of our in-house scanner.

2 Method

2.1 Proposed Model

Overall Architecture: The proposed model (Fig. 1) consists of a generator
G, a hierarchical discriminator DH , and an output alignment discriminator D
(omitted in the figure but its learning loss function shown as LD). Our objective
is to leverage high quality dataset T to learn an end-to-end model for speckle
noise removal and apply the model to dataset B collected by our in-house scan-
ner. The distribution shift between the two datasets T and B is compensated
by the loss function LH through hierarchical adversarial learning. In addition,
the denoised images G(T ) and G(B) generated from the two data domains are
aligned by the generative adversarial loss function LD during training.

HRNet Backbone for Image Restoration: HRNet [12] is an improved ver-
sion of the U-Net structure that has been widely applied to image reconstruc-
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Fig. 1. Diagram of the proposed framework. During training, datasets B and T are
alternatively input to the generator G (HRNet). Features of different resolutions are
extracted by G and hierarchically combined in the discriminator DH to perform adver-
sarial learning such that features extracted from dataset B are indistinguishable from
those from T . Features from T are then concatenated to generate denoised images as
G(T ) and are compared to ground truth TGT to minimize LT . In addition, G(B), im-
ages generated from dataset B, are aligned to G(T ) by a discriminator D (omitted in
this Figure) through the adversarial learning process governed by the loss LD. During
testing, images from B are input to G to generate denoised images as G(B).

tion and segmentation [11]. U-Net uses an encoder to compress input to a low-
dimensional latent vector through convolution and pooling and utilizes a decoder
to reconstruct input by expanding the compressed vector. There are also skip
connections to copy information from encoder directly to decoder located at the
same resolution level. Convolutional layers in deep learning models including
U-Net extract and magnify useful information from input for classification or
regression tasks. However, this convolutional processing only happens in the low
resolution levels after pooling in U-Net and other levels copy information di-
rectly from encoder to decoder by the skip connections. In contrast, HRNet uses
convolutional layers to learn useful information in all resolution levels as shown
in Fig. 1. We select HRNetV 2 layer [12] as output, which concatenates different
resolution channels by bilinear interrelation to reconstruct denoised image.

We utilize the combination of mean square error (MSE) and L1 losses for
training: LT = LMSE + αLL1

, as it has been shown in [7] that the L1 loss led
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to sparse solutions, which are desired for the OCT speckle noise removal. The
MSE loss and L1 loss can be formulated as follows, respectively,

LMSE = Et,tgt∼T [‖tgt −G(t)‖2], (1)

LL1 = Et,tgt∼T [‖tgt −G(t)‖1], (2)

where t and tgt represent a raw-clean image pair in training dataset T .

Hierarchical Adversarial Learning: Inspired by [15], we propose a hierarchi-
cal adversarial learning structure to compensate domain shift between datasets
T and B. We combine outputs from different resolution levels in HRNet (G)
using a hierarchial structure as DH in Fig. 1. Low-level resolution features are
domain informative while high-level resolution features are rich in semantic in-
formation. Direct stacking these features from different resolution levels for ad-
versarial learning can impair adaptation performance because of the information
conflicts among different resolution levels [15]. The hierarchical structure in DH

follows the resolution levels in the encoder part of G so that the conflicts can
be mitigated. Each level has a separate objective function and G and DH play
a min-max game to minimize the overall loss, LH =

∑K
k=1 γkLh,k, where Lh,k is

the loss function for level lk, k = 1, 2, 3...,K and

Lh,k = Eltk∈G(t)[log(DH(ltk))] + Elbk∈G(b)[log(1−DH(lbk))], (3)

γk are mixing coefficients and it increases as k decreases, making the attention
focus more on low-level domain information, and ltk and lbk represent features
extracted at the kth layer from datasets T and B, respectively.

Output Alignment: At output of G, we utilize a discriminator D to align the
reconstructed images G(B) and G(T ) in image space by adversarial learning,

LD = Et∼T [log(D(G(t)))] + Eb∼B [log(1−D(G(b)))], (4)

where b is one image in B. Finally, the total objective function of the framework
is,

min
G

max
DH ,D

LT + λ0LH + λ1LD, (5)

where λ0, λ1 are trade-off parameters between the two loss functions. With the
above learning processes and loss functions, the generator G can be trained to
restore high quality OCT images for our in-house scanner. The training and
testing procedure descriptions are provided in the caption of Fig. 1.

2.2 Dataset

High quality dataset T was created in our previous study [10], which was ap-
proved by IRB of the University and informed consents were obtained from all
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subjects. The dataset contains 512 raw OCT images collected by four commer-
cial scanners (Topcon DRI-1 Atlantis, Topcon 3D OCT 2000, Topcon 3D OCT
1000 and Zeiss Cirrus 4000, with their image sizes of 512×992, 512×885, 512×480
and 512×1024 respectively), and the training set is composed of 256 images from
Topcon DRI-1 Atlantis and 256 images from Topcon 3D OCT 2000. For each
raw image, a clean image was produced by registering and averaging raw images
acquired repeatedly at the same location from the same subject. We used flip-
ping along the transverse axis, scaling, rotation, and non-rigid transformations
to augment T and increased the data size by 4× for effective training. Dataset B
was collected by our recently developed non-commercial in-house OCT scanner
and there were totally 1024 raw OCT images, of which 200 images had disease.
We also set aside three disease raw images and six normal raw images from the
in-house scanner for testing.

2.3 Evaluation Metrics

We utilize four performance metrics to evaluate the proposed model including
signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), speckle suppression
index (SSI) and edge preservation index (EPI). As Fig.2a) and Fig.3a) show, we
manually selected regions of interest (ROIs) in background (green rectangles)
and signal (red rectangles) areas for SNR and CNR calculation, and delimitated
the blue boundaries for EPI computation. These four metrics are defined as,

SNR = 10 lg(
σ2
s

σ2
b

), CNR = 10 lg(
|µs − µb|√
σ2
s + σ2

b

),

SSI =
σr
µr
× µd

σd
, EPI =

∑
i

∑
j |Id(i+ 1, j)− Id(i, j)|∑

i

∑
j |Ir(i+ 1, j)− Ir(i, j)|

.

(6)

where µs, µb and σs, σb denote means and standard deviations of the defined sig-
nal and background regions in denoised image, respectively, for SNR and CNR
computations. µr, σr and µd, σd denote means and standard deviations of raw
and denoised images, respectively, for SSI computation. Ir and Id represent raw
and denoised images, and i and j represent longitudinal and lateral coordinates
in image. SNR reflects noise level, CNR is the contrast between signal and back-
ground, SSI measures ratio between noise and denoised images, and EPI reflects
the extent of details of edges preserved in denoised images. A small SSI value
and large SNR, CNR and EPI values represent high quality images.

3 Experiments and Results

3.1 Implementation Details

Discriminators DH and D followed the configurations in [7] consisting of six
convolutional layers where the first three used instance normalization. For all
the experiments, α was set to 100 in LT , hyper-parameters λ0 and λ1 were
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(a) (b) (c) (d)

Fig. 2. Ablation study results on a disease OCT image. Red and green rectangles rep-
resent signal and background regions manually selected for SNR and CNR calculation,
respectively. Blue curves are boundaries manually delimitated for EPI computation.
(a) Raw OCT image (b) U-Net (c) HRNet (d) HRNet+Hier (Proposed).

set to 10 in Eq. 5, and γ1, γ2, γ3, γ4 in LH followed [15] to set to 4, 3, 2 and
1, respectively. We utilized the Adam solver with an initial learning rate of
2.0 × 10−4 and a momentum of 0.5 for optimization. The batch size was set
to 2, and the number of training epochs was set to 400. Images were resized to
512×512 during training. The proposed method was implemented using Pytorch
and was trained using one NVIDIA RTX 3080 GPU with 10G memory.

3.2 Ablation Study

We conducted ablation study to investigate contribution of each of the three
components in the proposed model, including 1) U-Net as backbone for the
generator G with output alignment but no hierarchical adversarial learning (U-
Net), 2) HRNet as backbone for G with output alignment but no hierarchical
adversarial learning (HRNet) and 3) HRNet as backbone for G with both out-
put alignment and hierarchical adversarial learning as the final proposed model
(HRNet+Hier). Experimental results in Table 1 show that using HRNet to re-
place U-Net greatly improved performance of the model, increasing SNR from
22.69dB to 35.41dB. SSI and EPI were also improved with any exception of CNR
that slightly degraded. HRNet maintains low- and high-resolution information
throughout the entire process, making the denoised images much better quality.
When the hierarchical adversarial loss was combined, SNR was improved further
to 40.41dB, EPI also slightly increased and the other two degraded slightly.

Table 1. Ablation study on nine images from the in-house OCT scanner.

Method SNR (dB) CNR (dB) SSI EPI

Raw image 0.03±0.54 3.80±0.85 1.000±0.00 1.00±0.00

U-net 22.69±7.45 12.44±1.13 0.139±0.01 0.83±0.09

HRNet 35.41±12.00 11.35±1.34 0.087±0.01 0.94±0.07

HRNet+Hier 40.41±7.69 11.15±1.39 0.091±0.01 0.96±0.07
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Fig. 3. Comparison study results. The red rectangles, green rectangles and blue curves
are manually defined as in Fig. 2. (a) Raw image (b) NLM [1] (c) STROLLR [13] (d)
DnCNN [16] (e) DPDNN [5] (f) Edge-cGAN [10] (g) Mini-cGAN [17] (h) Proposed
(HRNet+Hier).

3.3 Comparison Study

Table 2. Results by competing methods on nine images from the in-house scanner.

Method SNR (dB) CNR (dB) SSI EPI Times(s)

Raw image 0.03±0.54 3.80±0.85 1.000±0.00 1.00±0.00 None

NLM [1] 19.50±4.21 9.23±1.98 0.697±0.03 0.55±0.06 0.089±0.006

STROLLR [13] 18.01±3.89 11.03±2.01 0.707±0.03 0.37±0.02 182.203±7.648

DnCNN [16] 14.99±2.27 7.00±1.10 0.670±0.03 0.62±0.03 0.022±0.003
DPDNN [5] 34.77±8.40 8.40±1.74 0.684±0.03 0.52±0.03 0.036±0.001

Edge-cGAN [10] 24.35±5.50 11.35±0.97 0.105±0.01 0.87±0.08 0.929±0.014

Mini-cGAN [17] 22.28±4.65 12.03±1.61 0.087±0.01 0.93±0.11 1.825±0.022

Proposed 40.41±7.69 11.15±1.39 0.091±0.01 0.96±0.07 0.025±0.008

We compared the proposed method with state-of-the-art methods, includ-
ing non-local means (NLM) [1], sparsifying transform learning and low-rank
method (STROLLR) [13], deep CNN with residual learning (DnCNN) [16], de-
noising prior driven deep neural network for image restoration (DPDNN) [5], our
previous method, Edge-cGAN[10] and its improved version, Mini-cGAN [17]. In
these experiments, parameters for traditional methods were set to values so that
the models can achieve best results for the application, and deep learning mod-
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els followed their original configurations. The proposed method and Mini-cGAN
compensated distribution shift existed between datasets T and B through ad-
versarial learning. To have a fair comparison, we performed a separate histogram
matching process for the testing images for all other competing methods before
testing. In addition, we compared efficiency by recording testing time required
by each method.

Visual inspection of Fig. 3 reveals that the proposed method achieved the
best result (Fig. 3h). Our previous methods Mini-cGAN and Edge-cGAN ranked
the second and third (Fig. 3g and Fig. 3f), respectively. Denoised images by all
other methods have low visual qualities. Table 2 shows qualitative performance
metrics indicating that the proposed method achieved the best SNR and EPI.
Mini-cGAN obtained the best CNR and SSI, and DnCNN achieved the best
computational efficiency, requiring only 22ms to process one image. It is worth
noting that the proposed model ranked the second and only needed 25ms to
denoise one image.

4 Discussion

The proposed method achieved the best visual quality as shown in Fig. 3. NLM
(Fig. 3b) and STROLLR (Fig. 3c) suffered from excessive smoothing, leading
to blurred regions at the boundaries between adjacent layers. The background
regions were not very clean either. DnCNN (Fig. 3d) performed well in retina
areas but left artifacts in background. DPDNN (Fig. 3e) obtained a very clean
background, however, the interlayer details were not well maintained. Edge-
cGAN (Fig. 3f) and Mini-cGAN (Fig. 3g) improved visual quality of the denoised
image significantly. However, the signal was still weak in the top right retina
area. The proposed model achieved the best image contrast, preserved the most
details in the layers under retina, and resulted in a much sharper enhanced image
(Fig. 3h).

The metrics of SNR and EPI represent signal to noise ratio and edge preserva-
tion performances in denoised images, respectively. The proposed model achieved
the best SNR and EPI (Table 2), indicating that it restored the strongest signal
by suppressing speckle noise and preserved the desired sharp detail information.
In terms of testing time, DnCNN took 3ms less than the proposed model. How-
ever, image quality by DnCNN was much worse. As compared to Mini-cGAN,
the new model improved SNR by a huge margin of 18.13dB to 40.41dB and
the testing time was accelerated by a factor of 73. The computational efficiency
satisfied real-time requirement of our in-house scanner. DPDNN achieved the
second best SNR of 34.77dB, its other metrics including CNR, SSI and EPI
were much worse than those by the proposed model, which can be confirmed in
Fig. 3e.

CNR and SSI represent the contrast and speckle suppression performances in
result images, respectively. Mini-cGAN uses U-Net as backbone and generates
denoised images by averaging multiple overlapped patches outputted by the
trained model during testing. In contrast, the proposed model utilizes the high-
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resolution HRNet to generate denoised images directly without averaging. The
averaging processing in Mini-cGAN reduced variance and led to slightly better
CNR and SSI with a cost of much longer testing time. We tested to conduct
the same averaging process in the proposed model to generate denoised images
and it did improve the CNR metric slightly but degraded SNR and required
much longer testing time. We concluded that the HRNet was able to restore the
strongest signal because of its unique structure and the repetition step in testing
was not necessary.

5 Conclusion

In this paper, we proposed a novel end-to-end cross-domain denoising framework
that significantly improved speckle noise suppression performance in OCT im-
ages. The proposed model can be trained and tested with OCT images collected
by different scanners, achieving automatic domain adaptation. We utilized the
HRNet backbone to carry high-resolution information and restored fidelity im-
ages. In addition, we developed a hierarchical adversarial learning module to
achieve the domain adaptation. The novel model improved SNR by huge mar-
gins as compared to our previous models and all competing state of the arts,
achieved a testing time of 0.025s, and satisfied real-time process requirement.
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